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.4hstract- The oscillatory instability of convection in a binary liquid-mixture with negative Sortt effects 
coupling Btnard convectlon and sohdlticatlon is lnvestrgatcd when the temperature of the upper boundar) 
IS below the freezing point of the two-componkn) system. Complete rejection of the lean component from 
the solid into Ihe liquid phase is assumed. The Sortt coefficient and the coefficients of thermal and solutal 
expansion depend strongly on the local concentration in the liquid and, consequently, on the thickness of 
the solidified layer. Linear stability analysis for typical ethanol&water mixtures demonstrates that the 

variation of concentration is a dominant effect in the destabilization of the conductive state. 

1. INTRODUCTION 

WE STUDY the convective instability of a binary liquid- 
layer heated from below and cooled from above so 
that in the basic state of heat conduction a planar 
solid-liquid interface separates ice in the upper part 
of the layer from liquid below (see Fig. 1). During 
solidification the solute is assumed to be completely 
rejected into the liquid phase and, therefore, the solid 
consists of pure solvent. Moreover, in the liquid mix- 
ture negative So& effects are present. Hence, the 
imposed temperature gradient induces a stabilizing 
concentration gradient across the height of the liquid 
layer. In such a system beyond a certain critical tem- 
perature difference the basic state is replaced by oscil- 
latory convection. 

In the absence of phase transformation the influence 
of negative So& effects on convection in binary mix- 
tures was first studied theoretically by Hurle and Jake- 
man [ 1, 21. Platten [3] and Velarde and Schechter [4]. 
These authors considered a simplified case in which 
thermal diffusion effects result in a linear con- 
centration profile of the basic state. Chock and Li 

[5] and more recently Zimmermann [6] based their 
stability analyses on a more general balance equation 
describing the mass flux in binary mixtures. Further 
investigations of this problem have been carried out 
by Linz and Liicke [7], Knobloch and Moore [8] and 
Cross and Kim [9]. The main result of all these analy- 
ses is that for sufficiently negative So&t numbers S, 
characterized by S < S,, and Sc-, < 0, the basic state 
becomes initially unstable to oscillatory perturbations 
as the temperature difference across the layer exceeds a 
critical value. When S > S,, a steady-state instability 
occurs. The case S = S,, denotes the codimension- 
two point where both instabilities coexist at the same 
critical value. 

In the presence of a solid-liquid interface there are, 
to our knowledge, only two papers dealing with the 
stability of a binary mixture subject to negative So& 
effects. Zimmermann et al. [lo] and Karcher [ 111 find 
for sufficiently negative So& numbers an oscillatory 
onset of convection. These authors assume in their 
analysis that the fluid properties are independent of 
the changing mean concentration within the liquid. 
However, Kolodner et al. [12] have shown that-#e 
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FIG 1. Principle sketch. 
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NOMENCLATURE 

height ratio, hs/h, 
concentration [wt fr.] 
initial concentration 
heat capacity [kJ kg-’ K-~ ‘1 
molecular diffusivity [m’ s ‘1 
acceleration of gravity [m s-*1 
layer height [m] 
amplitude of the interface deflection 
imaginary unit 
mass flux 
wave number 
latent heat of the solvent [kJ kg ‘1 
Lewis number, D,/d’-) 
slope number, nr’ ATc ’ 
slope of the melting curve [K] 
Prandtl number, V/K(~) 
Rayleigh number, agATLh:/(dL.)v) 
expansion ratio, (~l’/r*)ATr ’ 
Soret number, &AT, 
SorCt coefficient [K- ‘1 
Schmidt number, v/D, 
Stefan number, L/(c,AT, ) 
time [s] 
temperature 
melting temperature 
temperature difference 

W vertical velocity 
3 vertical coordinate. 

Greek symbols 
x thermal expansion coefficient [Km’] 
a’ solutal expansion coefficient [wt fr. ’ 

K thermal diffusivity [m’s_‘1 
1’ kinematic viscosity [m’s_‘] 

P density [kg m ‘1 
i. thermal conductivity [W m ’ Km ‘1 
(!I frequency 
7 oscillation period [s] 

ti separation ratio, SR,C* (I -C*). 

Superscripts 
* - mean value, value in the basic state 
(As) oscillatory 
L, S liquid, solid. 

Subscripts 
C critical 
CT codimension-two 
eff effective 
L, S liquid, solid 
0,1 upper, lower boundary. 

- 

Soret coefficient S, in a water-ethanol mixture 
depends strongly on the concentration of the mixture, 
see Fig. 2. Moreover, a thorough analysis of density 
data of D’Ans-Lax [13] demonstrates that also the 
coefficients of thermal and solutal expansion, CI and 
x’, vary strongly with the local alcohol concentration. 
This is shown in Fig. 3 for a mixture at a mean tem- 
perature T* = 5°C. These variations are relevant in 
the present problem since during solidification com- 
plete rejection of the solute into the liquid phase is 
assumed. Hence, increasing the ice thickness leads 
to an increase of the mean concentration within the 
liquid. 

In the present paper we include the effect of a vary- 
ing mean concentration on the onset of oscillatory 
convection in a binary mixture with negative Soret 
effects as influenced by a solid-liquid interface. In 
particular, in the stability analysis we take into 
account concentration-dependent coefficients S,, c( 
and a’. We also perform a re-evaluation of the exper- 
imental data of Zimmermann et al. [lo], by accounting 
more accurately for the variations of the fluid proper- 
ties with concentration and temperature. 

2. FORMULATION OF THE PROBLEM 

We consider the basic state of heat conduction in a 
partly solidified two-component layer (see Fig. 1). The 

layer is heated from below at z = 0 and cooled from 
above at z = h by arranging a temperature difference 
AT = T, -T, between bottom and top. The tem- 
perature at the top is below the freezing point of the 
mixture. Thus there is a solidified layer of pure solvent 
of height h, above a binary liquid-layer of height hL. 
The temperature difference across the liquid phase is 
ATL = T,, - TM, with TM the concentration-dependent 
melting temperature. Due to the presence of a negative 
Soret coefficient S, of the mixture, a stabilizing dis- 
tribution of the concentration c(z) is induced. The 
initial concentration is denoted by Co, defined in the 
ice-free case. Further properties of the liquid are the 
thermal diffusivity K’~), molecular diffusivity Do, kine- 
matic viscosity v and heat capacity T,,. 

The stability of the basic state is governed by the 
linearized Boussinesq equations within the liquid 
together with boundary conditions at the bottom 
z = 0 and appropriate interfacial conditions at z = hL. 
The corresponding eigenvalue problem for the onset 
of convection was derived in detail in ref. [IO] and will 
only be briefly presented here. The non-dimensional 
perturbation equations for the z-dependent normal- 
mode amplitudes of the vertical velocity W, tem- 
perature T, concentration C and mass flux J read as : 

(D’-k’)(D’-k’+ituPr)W-Ruk*[T+R,C,C] =O, 

(1) 
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The lower boundary is rigid, perfectly conducting 
and impermeable. Thus we have : 

W=DW=T=J=O atz=O. (5) 

At the solid-liquid interface we have to fulfil the con- 
servation equations of mass, energy and solute. Fur- 
thermore the no-slip condition holds. These con- 
ditions are : 

-0.6 

W+ita(l -p)H = 0, (6) 

DT+;,ncth (6A)T+[(d- 1)6cth(6/4) 

- iwp Sre] H = 0. (7) 

Jfhp Sc Pr-’ CH = 0, (8) 

DW=O at;= I, (9) 

-0.6 
t where : 

-1 

FIG. 2. So& coefficient ST of a water-ethanol mixture as 
function of ethanol concentration C and mean temperature 

T* according to Kolodner et al. [12]. 

6 = (k2 -iwKm’)’ ‘, (10) 

In the interfacial conditions (6)-(S), H represents the 
normal-mode amplitude of the deflection of the inter- 
face at z = 1, given by : 

H = (T-mC,C)[l +mC,(De)]-‘. (11) 

The basic state is characterized by a linear tem- 
perature profile and a non-linear concentration dis- 
tribution [lo]. We find : 

T(z) = I-z, (12) 

C(Z) = {C,+(l-C,2;,,,)Cfi:exp[S(l-z)]}-’, 

(13) 

(D2-k’+iw)T+ W= 0, (2) 

-DJ+ScPr-‘[iwC-(De)w] 

-kZIC-se(l-c,c)r] = 0, (3) 

J= -DC+S[C(l-C,C)DT-(l-2C,e)C]. (4) 

Here D represents the derivative with regard to the 
vertical direction, k is the horizonal wave number of 
the normal modes, and w denotes the frequency of 
oscillations. We have used the scales hL, !$/Ic(~), 
r~‘~‘/h,, AT, and C, for length, time, velocity, tem- 
perature difference and concentration, respectively. 

6- 
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FIG. 3. Coefficients of thermal and solutal expansion, x and 
2’. of a water-ethanol mixture as function of ethanol con- 
centration C’ at mean temperature T* = S‘C according to 

density data of D‘Ans-Lax [13]. 

where the interfacial concentration is : 

c _ exp[C,(l+A)S]-1 
(11 - G(exp[Sl-l) (14) 

Equations (I 3) and (14) imply the assumption of com- 
plete rejection of solute during solidification. 

The eigenvalue problem defined above is controlled 
by a set of 12 parameters. The relevant dimensionless 
groups for describing the main physical phenomena 
are the Rayleigh number Ra, the expansion ratio Rs, 
the height ratio A, the So& number S, and the initial 
concentration Co, given by the expression’s : 

wQ-,.h: 1 
Ra=---- 

R  =  E’ 
K(I.)” 5 rAT, ’ 

A=--, S=S,AT,., 
h,_ 

Co. (15a)-~(15e) 

Other relevant parameters are the Prandtl number Pr, 
the Schmidt number SC, the Stefan number Ste, the 
slope number m, and the solid-liquid ratios of ref- 
erence density p, thermal conductivity /1, and thermal 
diffusivity K : 

L 
Ste = __ 

c,ATL ’ 
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Table 1. Soret number Sand expansion ratio R, as function of the height ratio (I for a typical water-ethanol mixture with 
initial concentration Co = 0. I5 at mean temperature T* = 5 C 

A 0 0.01 0.02 0.04 0.06 0.08 0.1 
s -0.1624 -0.1608 -0.1591 -0.1557 -0.1522 -0.1488 -0.1454 

& 24.9 24.33 23.78 22.74 21.8 20.92 20.12 

A 0.12 0.16 0.2 0.24 0.28 0.32 0.36 
s -0.1419 -0.1350 -0.1281 --0.1212 -0.1143 -0.1073 -0.1004 

RS 19.38 18.05 16.9 15.91 15.04 14.28 13.62 
__.~ _~~ 

(lea) (I’&3 

Hcrc L is the latent heat of the solvent, and /II’ denotes 
the slope of the melting curve of an ideal mixture (see 
Ott rt al. [14]). 

3. METHOD OF SOLUTION 

3.1. Culculation procedure 
Using the basic equations of the previous chapter 

we calculate the critical Rayleigh number Rag”’ and 
the critical frequency w, for the onset of oscillatory 
convection as the height ratio A is varied. The cal- 
culation procedure is as follows : for a given A and a 
corresponding increased concentration of solute in 
the liquid phase we define the mean concentration 
C* = CO(l +A) within the liquid. The initial con- 
centration and the mean temperature are fixed at 
values Co = 0.15 and T* = SC, which correspond to 
the experimental conditions of Zimmermann et al. 
[lo]. Then we calculate the parameter S = S(C*) 
using data for Sr as shown in Fig. 1 and a first esti- 
mation of AT,. Now the melting temperature TM( C) 
can be derived from the relation TM = m’CoCc,), 
where we have c, ,) from equation (14) and m’ from 
the phase diagram [14]. Finally, we estimate AT,_ anew 
by setting AT,_ = 2(T*- TM) and repeat the cal- 
culational steps. As a result of the iteration we obtain 
the temperature profile of the basic state T’(z) (“C) 
to high accuracy. However, at low mean values the 
temperature profile gives rise to a non-linear density 
stratification within the liquid [6, lo]. To account for 
these non-Boussinesq effects we introduce integral 
mean definitions for the coeficients of thermal and 
solutal expansion by the expressions : 

where we take the density data from D’Ans-Lax [ 131. 
These integral mean values are used to calculate the 
expansion ratio R,(C*). In Table I we have listed the 
data of our evaluation. The absolute value of both 

parameters, the Soritt number and the expansion ratio, 
obviously decrease as A increases. 

All the other parameters are fixed at values likewise 
adapted to the experimental situation of Zimmermann 
et al. [lo], i.e. Pr = 29.6, Sc = 1027.7, Ste = 3.02, 
117 = - I .96 and p = K = i = 1.001. For this par- 
ticular set of parameters the eigenvalue problem 
defined by equations (I)-(14) is solved numerically 
using the SUPORE code of Scott and Watts [15]. For 
comparison with previous results and for dis- 
tinguishing the various physical effects we also repeat 
the calculations for parameters S and R, independent 
of concentration [ 10, 111. 

3.2. Re-evaluation of experimental results 
The experiments of Zimmermann et al. [lo] were 

performed in a rectangular large aspect-ratio cell of 
dimension length : width : height = 200 : 20 : 3.12 mm. 
The test liquid was a water-ethanol mixture with 
initial concentration C, = 15 wt%. Table 2 shows the 
experimental data. The measured quantities are the 
temperatures r, and T, at the lower and upper bound- 
ary, the mean ice thickness h, and the period of oscil- 
lation 7(s). 

Our evaluation procedure is as follows: for each 
data sequence we calculate the liquid height 
k, = h-h?,, the height ratio A = h,/hL and the mean 
concentration C* = CO(l +A) within the liquid. To 

Table 2. Experimental data of Zimmermann et al. [IO] for a 
water-ethanol mixture with initial concentration C,, = 15 

wt% 
_ ~_____ ~~ 

&, ( Cl 7-1 C 0 lk (mm) T (s) 

15.56 -- 7.87 0 31.2 
15.91 -8.51 0.035 30.6 
16.97 -9.05 0.11 29.3 
16.95 .-9.5 0.18 28.8 
18.79 - 10.38 0.3 26.3 
19.28 - 10.41 0.32 26.1 
20.17 - 11.44 0.42 24.2 
21.13 - 11.78 0.45 24.6 
21.57 - 12.51 0.55 23.3 
22.51 - 13.14 0.59 22.1 
24.37 ~ 14.57 0.74 20.6 
25.29 - 15.27 0.78 19.3 
25.74 - 15.93 0.83 18.6 
26.65 - 16.65 0.87 18.6 
26. I7 _ 16.42 0.89 19.4 

__ __~~_~~~~~ ~~~ ~~ .~ 
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evaluate Rap) from equation (15a) we need AT,_ and 
cc as further data input. This is done in the same way 
as described in Section 3.1. Thus we account more 
accurately for the fluid properties variation with C* 
and the non-Boussinesq effects of the density-tem- 
ljerature relation. In the evaluation of Zimmermann 
et al. [lo] both effects were neglected. To obtain the 
dimepsionless frequeqcies of oscillation o, from the 
experimental data we evaluate the scaling relation 
w, = 27c*hi/(~(‘+)~). By comparing dimensionless 
quantities we are able to separate different physical 
effects. 

4. RESULTS AND CONCLUSIONS 

Figure 4 shows the critical Rayleigh numbers 
Rap) for the onset of oscillations as function of the 
height ratio A. The results of our present analysis, 
which includes proper modelling of the solidification 
process with stepwise adjusted parameters S and R, 
corresponding to Table 1, are characterized by sym- 
bols 0. In addition the calculated data based on the 
assumption of constant parameters [lo, 111, i.e. 
S = -0.1624 and R, = 24.9 defined at A = 0, are 
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FIG. 4. Critical Rayleigh numbers for onset of oscillatory 
convection : ??-re-evaluated experimental values according 
to Zimmermann et al. [lo] ; O-calculated values for S(C*) 
and R,(C*) ; O-calculated values for constant S and R,; 
(---)-valuated curve according to the relation of Hurle 

and Jakeman [2]. 

given by symbols 0. The re-evaluated experimental 
data of Zimmermann et al. [lo] are denoted by sym- 
bols ??. In the experiments a decrease of ~a?) with 
increasing dimensionless ice layer thickness is 
observed. 

The present calculations show that the theoretical 
assumption of parameters independent of con- 
centration fails to describe the experimental results ; 
the values of Rap) increase monotonically with 
increasing A (see Fig. 4, symbols 0). This theoretical 
finding is inconsistent with the experiments, but can 
be explained as follows: increasing the ice thickness 
results in an effective So& number S,, according to 
the relation S,, = SC,,(l+ A), cf. equation (14). 
Hence, by fixing S and increasing A, negative So& 
effects are intensified leading to a stabilization of the 
liquid layer. This effect outweighs the destabilizing 
effect of the insulating ice layer. Note that the numeri- 
cal results of Zimmermann et al. [lo] presented in 
their Fig. 9a are incorrect (cf. ref. [lo]). 

A more realistic description of the experimental 
observations is obtained if the variation of C* with 
both parameters-the So& number Sand the expan- 
sion ratio RsPis taken into account (see Fig. 4, sym- 
bols 0). The calculated critical values decrease 
monotonically with increasing A and thus show qualita- 
tive agreement with the experiments. This behavior is 
directly related to the decrease of the absolute values 
of 5’ and Rs as the ice layer becomes thicker (cf. data 
of Table 1). Thereby, the stabilizing effect of the con- 
centration stratification is diminished and the critical 
Rayleigh numbers are reduced. 

This result is supported by an approximate relation 
for the critical oscillatory Rayleigh number reported 
by Hurle and Jakeman [2]. This relation is given by : 

Rar’ = Ra,, l- 
l.OSl/J 

> l+$+Pr-’ ’ 
(19) 

where Ra,, = 1707.8. Equation (19) holds for binary 
liquid mixtures bounded above and below by rigid, 
perfectly conducting plates and in the limit of small 
or zero Lewis numbers Le = Pu SC-‘. To evaluate the 
separation ratio $ we use the data of Table 1 to 
account for the concentration dependence of the par- 
ameters, i.e. $ = SR,C*(l- C*). The critical Ray- 
leigh numbers calculated by this method are given by 
the dotted line in Fig. 4. The values are slightly above 
those values denoted by symbols 0, which account 
for the solidification of solvent at the upper boundary. 
In fact, we attribute this small difference to the 
neglecting of solidification at the upper boundary 
when employing equation (19). Hence, the destabiliz- 
ing effect of the insulating ice layer has only a minor 
influence on the onset of oscillatory convection. 

There are still quantitative differences between the 
experimental data and the numerical findings for the 
case of varying parameters S and Rs. In the range 
0.1 < A < 0.4 the critical Rayleigh numbers pre- 
dicted by our analysis are about 20% smaller than 
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those of the experiments. We attribute this systematic 
deviation to uncertainties which arise from extra- 
polating the Soret data of Kolodner et al. [12], valid 
in the range 10°C < T* < 4O’C, to values at a mean 
temperature T* = 5’C, and from extrapolating like- 
wise density data of D’Ans-Lax [ 131 for T > O’C to a 

range TM d T < 0 C. Moreover, the use of an aver- 
aging procedure for S and R, rather than using their 
local functional properties in the basic equations may 
also give rise to a deviation. 

Figure 5 shows the dependence of the critical fre- 
quency of oscillation (11, on the height ratio A. We 
have used the same symbols as in Fig. 4 to denote the 
different theoretical approaches and the re-evaluated 
experimental data of Zimmermann et al. [lo]. The 
graph shows that the experimental values decrease 
slightly for the whole parameter range 0 < A < 0.4. 
Hence, the observed strong decrease of z with increas- 
ing hs (cf. data of Table 2 and Figure 9b of ref. [IO]) 
is mainly caused by the decrease of the liquid-layer 
height h,~. 

The calculated frequency data based on the assump- 
tion of parameters S and R, independent of con- 
centration do not reflect the experimental findings (see 

30 

25 

I 

,,o 
0 

I 

l- 

?? ? ?
? ? ? ?

? ?

. 
-. 

-. 
--. 

I 
0 0.1 0.2 0.3 0.4 

A 
Ftc .S Critical frequencies for onset of oscillatory con- 
vection : m-re-evaluated experimental values according to 
Zimmermann et al. [IO] ; O--calculated values for S(C*) 
and R,(C*) ; O--calculated values for constant S and R,; 
(~~~)+valuated curve according to the relation of Hurle 
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Fig. 5, symbols O), as a monotonic increase of w, 
with increasing A is predicted. The increase of the 
calculated values can be explained by the enhanced 
effective Soret number S,, = SC,(l + A) in the pres- 
ence of an ice layer. 

If the variation of the parameters S and R, with 
the ice thickness according to Table 1 is taken into 
account, the numerical results show a monotonic 
decrease of the critical frequencies with increasing 
height ratio A (see Fig. 5, symbols 0). This feature is 
explained by the lessening of the negative Soret effect 
due to an increasing mean concentration which results 
in lower frequencies. 

A comparison of the calculated new data for vary- 
ing parameters S, R, and the experimental values 
shows qualitative agreement as both data sequences 
decrease with increasing A. However, the theoretical 
values of w, decrease significantly stronger than the 
experimental ones. Moreover, there is a discrepancy 
of about 10% in the calculated and observed fre- 
quency in a layer without ice (A = 0). The existing’ 
discrepancy suggests that there are still some physical 
effects in the experiment which are not quantitatively 
accounted for in the model. Already above we pointed 
out three effects which may explain discrepancies for 
the calculated and observed critical Rayleigh 
numbers. These defects should apply for the frequency 
as well. 

Finally, we evaluate the approximate relation of 
Hurle and Jakeman [2] for the critical frequency given 
as : 

by adapting the separation ratio II/ to the actual mean 
concentration C* within the liquid. The results are 
represented by the dotted line in Fig. 5. This curve is 
located distinctly above our calculated values denoted 
by symbols 0 but both data sequences decrease 
monotonically for increasing height ratio A. Thus 
there is qualitative agreement. The existing difference 
between the two data sets is attributed to a decreasing 
accuracy of the approximate relation for large nega- 
tive $-values as noticed already by Lhost et al. [16], 
and in particular to the fact that solidification effects 
at the upper boundary are included in our analysis 
while neglected in the derivation of equation (20). 

In summary we conclude that the predominant 
influence of a solid-liquid interface on the oscillatory 
instability in a binary liquid mixture is the change 
of property parameters such as SorCt number 5’ and 
expansion ratio Rs with a variation of the mean con- 
centration in the liquid. This variation originates from 
a changing ice thickness since during solidification 
the light component is rejected into the liquid phase. 
lnterfacial conditions like the insulating effect induced 
by the presence of the ice layer are of minor importance. 
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